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Nonequilibrium relaxation analysis of two-dimensional melting
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The phase diagram of a hard-disk system is studied by observing nonequilibrium relaxation functions of a
bond-orientational order parameter using particle dynamics simulations. From a finite-time scaling analysis,
two Kosterlitz-Thouless transitions can be observed when the density is increased from the isotropic fluid
phase to closest packing. The transition densities are estimated to be 0.901~2! and 0.910~2!, where the density
denotes the fraction of area occupied by the particles, the density is normalized to one for the quadratic packing
configuration. These observations are consistent with the predictions of the Kosterlitz-Thouless-Halperin-
Nelson-Young theory.

DOI: 10.1103/PhysRevE.66.041110 PACS number~s!: 64.60.2i, 64.70.Dv, 02.70.Ns
tio
r-

f
o

ng

s

ee
nd
as
u

al
ep
ry
n
a

er
re
le
er
s

en

iz
m

n
n

s
e

nd
b

gy
ition
is

ex-
so,

d
r its
the
ize

nd-
ith
od

tri-

t-
ns
ve
sive

n-

By
ran-
nts

the
t

lyz-
ta-

val
ich
qui-
. In
ed
I. INTRODUCTION

Since computer simulation suggested a melting transi
in hard-particle system@1,2#, many studies have been unde
taken to understand the nature of this transition, which
now often called as the ‘‘Alder transition.’’ The property o
the two-dimensional solid of the hard-disk system is n
clear yet, as the two-dimensional system with short-ra
interaction at density less than 1 lacks positional order@3#.
Halperin and Nelson@4#, and Young@5# explained the two-
dimensional solid based on the Kosterlitz-Thouless~KT!
transition, which is referred to the Kosterlitz-Thoules
Halperin-Nelson-Young~KTHNY ! theory. The KTHNY
theory introduced a new phase, a ‘‘hexatic phase,’’ betw
the liquid and the solid phase. The correlation of the bo
orientational order is long-range in the solid phase, qu
long-range in the hexatic phase, and short-range in the liq
phase@6#. With the assumption that two kinds of topologic
defects, a disclination and a dislocation, are unbound s
rately, the theory predicts two KT transitions. Another theo
was proposed by Chui@7#. He studied the spontaneous ge
eration of grain boundaries, and predicted a first-order tr
sition.

To clarify the nature of this transition, many comput
simulations have been performed. Alder and Wainwright
ported that the transition is of first order in their partic
dynamics simulations with 870 particles. The densities w
normalized to 1 for the quadratic packing configuration,
r54Nr2/A with the area of the systemA, the number of
particlesN, and the radius of the particlesr. Hereafter we use
the definition for density. They determined the highest d
sity at which the isotropic phase can exist asr i50.880 and
the lowest one at which the solid phase can exist asrm
50.912@2#. Zollweg, Chester, and Leung examined the s
dependence in the hard-disk systems and found a logarith
size dependence close to one of the melting points@8#. They
also argued that when the system becomes larger, the de
range of the intermediate phase becomes smaller, so it is
clear whether the intermediate phase, which correspond
the hexatic phase in the KTHNY theory, survives or vanish
in the thermodynamic limit. Lee and Strandburg fou
double peaks in a distribution range of volumes obtained
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Monte Carlo ~MC! simulations with constant pressure@9#.
With Lee-Kosterlitz scaling, they found a bulk free-ener
barrier between two phases and concluded that the trans
is of first order. As they used only up to 400 particles, it
difficult to say whether the system is large enough to
trapolate to the thermodynamic limit. Fernandez, Alon
and Stankiewicz reported that the two transition pointsr i
and rm were the same within statistical errors@10#. They
obtained r i5rm50.916(5) for the transition density an
concluded that the intermediate phase does not exist o
range is quite small. Weber, Marx, and Binder studied
transition via the sub-block analysis method of finite-s
scaling and concluded that the transition is of first order@11#.
They obtained the critical densitiesr i50.880 and rm
50.905. Jaster studied the divergence of the bo
orientational correlation length and the susceptibility w
MC simulations and obtained the results that are in go
agreement with the KTHNY theory@12#. He determined the
critical densities asr i50.899(1) andrm>0.91. Recently,
Sengupta, Nielaba, and Binder studied a dislocation-free
angular solid of hard disks by MC simulations@13#.

They found that the KTHNY transition preempts the firs
order transition by a small margin with numerical solutio
of KTHNY recursion relations. Though many papers ha
been dedicated to the problem, as yet there are no conclu
results to explain the transition.

In this paper, we study the problem by analyzing the no
equilibrium relaxation ~NER! behavior of the bond-
orientational order using particle dynamics simulations.
analyzing the NER data, one can accurately determine t
sition points and exponents including dynamical expone
for various kinds of systems with the MC method@14–16#.
NER was also applied to spin-glass transitions to analyze
equilibrium phase diagram@17#. These studies showed tha
equilibrium properties of a system can be studied by ana
ing its NER behavior. NER methods saves much compu
tional time because they use only the relaxation inter
which cannot be used by equilibrium methods but wh
occurs, nevertheless, in the simulations. Therefore the e
librium state of the system does not have to be reached
addition, it turns out that the NER methods less influenc
by finite-size effects.
©2002 The American Physical Society10-1
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II. BOND-ORIENTATIONAL ORDER

The bond-orientational orderf6 is defined as

f65U1

N (
k

N

(
l

nk e6iukl

nk
U2

, ~1!

whereN andnk denote the number of particles and the nu
ber of neighbors of particlek, respectively. The definition o
nk andukl are described in Fig. 1. Note that the angleukl is
defined with respect to an arbitrary but fixed global axis.
search neighboring particles, we use a search area with
circle with radiusR and ignore particles at long distance
save computer time, in contrast to Jaster, who uses
Voronoi construction@12#. The value ofR is set to 2.7r (r is
the radius of particles!, to find not more than six neighbors i
the area. We confirmed that the value off6 has about the
same value for the Voronoi construction and our search
area method. The parameterf6 becomes 1 when particle
are located on the points of a hexagonal grid, and it beco
0 when the particle location is completely disordered. The
fore f6 can be used to describe how close the system i
hexagonal packing. The expectation value off6 depends on
densityr and in nonequilibrium on timet.

III. NUMERICAL SIMULATION

A. The model

We monitor the time evolution off6 at various densities
in particle dynamics simulation with periodic boundary co
ditions. The fifth-order predictor-corrector method are us
for the time integration. We treat elastic disks and extrapo
to the hard disks. All properties are rescaled with a rad
mass and mean kinetic energy of particles, so all quant
are dimensionless. The number of particlesN of the system
was 23 256. The density of the system is controlled
choosing the value of the radius of particlesr. The mass of
the particlesm was set to 1, and the mean kinetic energy p
particle ^v2/N& was set to 12.8. Under this condition, th
Young’s modulus was set to 106 to ensure that the penetra
tion depth is smaller than 0.02r . The extrapolation to hard
core systems can be done by calculating an effective ra

FIG. 1. The definition of the neighboring angleukl and the
number of neighboring particlesnk , wherek is a particle index and
l is an index of the neighboring particles. The value ofukl is defined
as the angle between the line from particlek andl with respect to an
arbitrary, but fixed global axis. The value ofnk is the number of
particles in the search area of the particlek.
04111
-

o
a

he

g

es
-

to

-
d
te
s,
s

y

r

us

r 8 that is smaller than the real radiusr used for the simula-
tion @18#. The effective densityr is extrapolated for the hard
core system as

r5
4Nr82

A
, ~2!

where A is the area in which the particles are allowed
move andN is the number of particles in the system. In th
following, we use this effective density. A time step was s
to be 1.031024, which is short in comparison to the theo
retical mean contacting time, which is about 1023 in this
case, to make the numerical integration stable. The theo
cal mean contacting time is the time when two particles
in contact, and it can be calculated by the elastic modu
and the mean velocity of particles. Total simulational ste
are 900 000. The studied range of density from 0.87 to 0
was the range the Alder transitions occur; 10–64 runs
averaged for each density.

At the beginning of the simulation, the particles were s
up in the perfect hexagonal order, in other words,f6(t
50,r) is 1, and the particles are given an initial velocity
random direction. This initial configuration is shown in Fi
2. In this condition, the asymptotic behavior off6(t,r) is
expected to be an exponential decay in the disordered~fluid!
phase, a power-law decay in the KT~hexatic! phase and a
decay slower than power law in the ordered~solid! phase.

B. Results

A typical configuration of small system,N5225, is
shown in Fig. 3 and the time evolution off6 with N
523 256 is shown in Fig. 4. Figure 4 shows thatf6 becomes
asymptotically constant at high density in the solid phase
decays exponentially at low density in the liquid phase. T
KTHNY theory predicts the range of density in whichf6
shows power-law decay between the solid and the liq
phase, but this is not clear from Fig. 3.

FIG. 2. The initial configuration of a system with 225 particle
and densityr50.89. All quantities are dimensionless. A small sy
tem is shown to improve visibility. Circles represent particles, a
the lines are bonds to calculate the hexatic packing order param
f6 having a value of 1.
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C. Finite-time scaling analysis

Although it is not easy to estimate the transition densit
r i andrm from Fig. 4, we can evaluate them from finite-tim
scaling. The following finite-time scaling analysis is use
to study the KT transition@19,20#. For densities lower than
r i , a characteristic relaxation timet exists in the system, so
we can writef6(r,t) as

f6~«,t !5t2lf 6̄~ t/t!S «5
r2r i

r i
D , ~3!

with a critical exponentl.
We cannot scale the data of densities higher thanr.r i

because there is no characteristic relaxation time as in
system with critical KT behavior.

According to the prediction of the KTHNY theory, th
correlation lengthj diverges exponentially at the KT trans
tion point, so it has the form asj;exp(d/A«), with a con-

FIG. 3. Typical configuration of a system with 225 particles
scaled densityr50.89, and a hexagonal packing order parame
f650.182. A small system is shown in order to improve visibilit

FIG. 4. The time evolutions of the hexatic-ordering parame
f6 ~log-log plot!. The asymptotic behavior off6 becomes constan
at high density and decays exponentially at low density. The gra
correspond to the solid and the liquid phases, respectively. As
dicted by the KTHNY theory, the density range in whichf6 shows
power-law decay is between the solid and the liquid phases, b
cannot be determined from this figure.
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stantd. Assuming the scaling relationt;jz with a dynami-
cal exponentz @19,20#, the divergence behavior oft can be
written as

t~«!5b exp~a/A«!, ~4!

with constantsa andb. Using Eqs.~3! and~4!, we obtain the
finite-time scaling functionf̄6 as

f6~«,t !5t2lf̄6~ te2a/A«!. ~5!

One can apply the same argument to determinerm . We ana-
lyze the results off6 with the scaling form Eq.~5!. Scaling
parameters are the critical densitiesr i and rm , the critical
exponentl, and the proportionality constanta of Eq. ~4!.

The scaling plot of the liquid hexatic transition is show
in Fig. 5. Parameters arer i50.901(2), l50.2(1), anda
50.83(1). We take texp(2a/A«) as the horizontal axis and
f6(«,t)tl as the vertical. The graphs for the densities low
than 0.901 are well scaled, but those of higher densities
not. This feature is characteristic to the KT transition@19,20#.

FIG. 6. Finite-time scaling withrm50.910, l50.1, and a
51.2. The data of lower densities (r,rm) fall on a single curve,
but data of higher densities do not.
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FIG. 5. Finite-time scaling withr i50.901, l50.2, and a
50.83. The data of lower densities (r,r i) fall on a single curve,
but the data of higher densities do not show the scaling beha
Densities are 0.878, 0.881, 0.883, 0.885, 0.888, 0.890, 0.8
0.898, 0.903, 0.907, 0.913, and 0.918.
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The fit result for the hexatic-solid transition is shown
Fig. 6. Parameters arerm50.910(2), l50.1(1), anda
51.2(1). Thedata at lower densities show good scaling b
havior while the data of higher densities do not, which a
suggests a KT transition.

One can determine these two critical densities uniqu
since they cannot be scaled by anyl and a with different
critical densities used above. Jaster estimated these two
sition points asr i50.899(1) andrm>0.91 @12#. Our results
are consistent with his result.

IV. SUMMARY

We have studied the nonequilibrium relaxation behav
of the bond-orientational order in the two-dimensional ha
core system with the particle dynamics simulations, and
supported the existence of the hexatic phase. Using fin
. B
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time scaling analysis, two KT-transition points are det
mined asr i50.901(2) andrm50.910(2). Thescaling be-
havior only at lower density of the two transition poin
suggests that these transitions are of the KT-transition ty
These results show good agreement with the KTHNY theo
This study also shows that the NER method can be used
the particle dynamics simulation as well as for the Mon
Carlo method.
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@18# W. Vermöhlen and N. Ito, Phys. Rev. E51, 4325~1996!.
@19# Y. Ozeki, K. Ogawa, and N. Ito~unpublished!.
@20# Y. Ozeki and N. Ito, inProceedings of the Computer Simula

tion Studies in Condensed Matter Physics XV, edited by D. P.
Landau, S. P. Lewis, and H.-B. Schu¨ttler ~Springer-Verlag,
Berlin, 2002!.
0-4


